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The theory of alternating gradient accelerators itself started with the clas-
sic Courant and Snyder paper.® All the major phenomena of one-particle dy-
namics were already described in Kolomensky and Lebedev’s book.* Chirikov’s
criterion of the onset of stochasticity® was formulated in 1959. Since then,
generations of accelerator physicists have studjed rigorously and systematized
practically all important effects.® Most efforts were related to particular ma-
chines and nonlinearities. The main concern was short-term stability, which
was studied basically by perturbation theory. Computers made possible the
numerical simulation of particle dynamics. Sophisticated numeric codes were
developed with emphasis on the simplecticity of the algorithm,” and their sig-
nificance is hard to overestimate. The working accelerators justify and prove
the merit of these efforts.

The main progress in understanding long-term stability came, however,
from studies of simple models with few degrees of freedom in nonlinear me-
chanics. Several new phenomena were discovered, such as the scaling law in
bifurcation of periodic orbits® and the strange attractor in nomnlinear dissipa-
tive systems.® The mechanism of the break-up of Kolmogorov-Arnold-Moser
(KAM) invariant tori was recently clarified.!® A residue criterion, very impor-
tant for applications, has been formulated.’? A method of evaluating transit
time in the stochastic component has been suggested.!! The generalization of
the results on the three-dimensional time-dependent case, important for accel-
erators, will be justified soon.13 It is more difficult to understand, however, how
these methods can be applied to real accelerators, where random multipoles,
noise, and dissipation are important. As a result of this progress, we are much
better prepared now than before to analyze long-term stability.

First of all, KAM theory assures that a small enough and smooth pertur-
bation, although it distorts the trajectories, does not change the character of
motion for most of them. This validates the application of perturbation theory
to systems with small nonlinearities.

The structure of phase space has a universal character. The regions in
Phase space with stable, regular motion intermit with stochastic layers, where
motion is random. The stochastic component increases with nonlinearity (or
amplitude) of the system. When the nonlinearity exceeds some finite threshold,
stochastic motion takes place in the whole phase space. The residue eriterion
. or Chirikov’s criterion gives the quantative estimation of the onset of global
stochasticity.

Below the threshold, where all accelerators operate, there is a drift of parti-
cles along the thin stochastic layers. If the system has more than 2 dimensions,
then, for conservative systems, particle drift is unbounded. This is Arnold’s
diffusion, and it causes the universal instability of nonlinear systems. The cou-
pling between stochastic motion in a stochastic layer and other degrees of free-
dom generates the so-called modulation diffusion in these degrees of freedom. 4



Noise causes additional streaming along the stochastic layers.!5 Al] these types
of diffusion define the rate of “weak instabilities.” 16 Fortunately, the diffusion
rate for small nonlinearities is exponentially small, so that accelerators have a
chance to work.

Tracking, or numerical calculation of the trajectory of the lattice element
by element and turn by turn, is the most powerful method today for the anal-
ysis of weak instabilities. However, the method has its limitations, related to
limited available CPU time and the generally singular dependence of trajectory
behavior on initial conditions.

The goal of this chapter is to review the present situation regarding one-
particle dynamics in a collider such as the SSC. Some important aspects are
beyond its scope, and many excellent papers are not mentioned, because of
limitations of chapter length and of the author’s knowledge.

1. HAMILTONIAN; NOTATIONS

For simplicity we assume a plane closed reference orbit of circumference
2nR. The longitudinal coordinate of a particle is the distance along the ref-
erence orbit. The particle location specifies the plane, perpendicular to the
reference orbit. The coordinate system (z,y) is chosen in this plane with the
origin on the closed orbit. The vertical y-axis is perpendicular to the plane of
the reference orbit.

In the linear approximation, the Hamiltonian takes the form

Ho(z,pz,y,py,5) = %{P,’ P50 (H)JH (%) (%‘?)X (1-1)

2 2 p
+ 2 (%x“ + b X? - 20, XY — blY’) }

2p

where P, = pd(z,y)/ds are canonically conjugated to the coordinates X,Y;
the deviation of the momentum p from the equilibrium momentum p, is Ap =
P — p,; the distortion of the y-component of the magnetic field B, (z,y) on the
reference orbit is AB = By(z = y = 0) — B,; and the radius of curvature
of the reference orbit p(s8) is given by the relation P.¢ = epB,. The multipole
expansion of the field B, ,(z,y) defines the (2n + 2)-pole coefficients b, (s), and
skew multipoles a, (s):

By +iB: =B, ) (b +1aa)(z +iy)" .
n=0
The coeflicient b; defines sextupole errors, by gives octopole errors, and so
on. In CDR b, are measured in units of 10~4 ¢m—", We assume the symmetry
By(z,~y) = B(z,y), which means that all skew multipoles a,, = 0.



The terms n = 0, 1 are included in the linear Hamiltonian (1-1). The
nonlinearities b,, n > 2 define the perturbation V:

V(X,Y,5) = % 3 i”‘fi (X +iY)" 4 e, (1-2)

n=2

For the off-momentum particle the horizontal displacement X is a sum of a
periodic closed-orbit function ¢ (s) and the free betatron oscillations zp around
it:

X=¢(s)+zp(s), Y =uls);

Pe=poi(s) +p(s), P, = py(s) . (1-3)

The closed-orbit function satisfies the equation

o+ (2 (bt D)= 28R 4

o R

p

(Z2)(1 - o) - 1(3;) Y bacn(s). (1-4)

In the linear approximation in (Ap/p) and for bg = 1, the closed-orbit func-
tion is proportional to the dispersion function ¢ = (Ap/p)no(s). The amplitudes
of the betatron oscillations are given by the relations

zy = \/26.84(s) cos 1 , p_;_ = —V2e;/B; sin(¢; + azcosy;) (1-5)

and the same in the vertical plane,
Heree = I/p = z2/3, and the action I and angle ¢ = ) —0(s) are canonical
conjugated variables:

]

0(s} = p(s) —vos/R, uls) = [ ds/B(s), 2rvo=p(27R). (1-6)
0

The function u(s) is called a phase advance. Normalized emittance e,

defined in terms of the rms beam size 02 = < z2 >,

___<I>__')fo2
T me B

is an adiabatic invariant remaining constant during the acceleration. For the
SSC, €, = 1 pym,

The beta-function f = w? and & = ~(1/2)8'(s) are given by the periodic
solution of the equations



1/Ps -
w:,y :t ; (-p_) nxsywzly = quU 3

1
where ny = z nb, ¢ 1,
n=1

(1-7)

nz = ny+_-

The beta-function defined in this way depends on momentum Ap/p, be-
cause of the coefficient (p, /P), which gives the natural chromaticity, and because
of the momentum dependenc

e of the function ¢(s), if b, # 0. The same is true
for the linear tune vy, defined by Eq. (1-6).

The Hamiltonian Hy in the action-angle variables takes the form

HO(I,qb,s/R) = prpe = p(vzoe,+vy°ey) .

(1-8)
The total Hamiltonian is
_ I -3H ¢  8H
H=H+v, 5= o ' dsR ~ a1  (19)
The perturbation V is

V(I,6,8/R) = p) " gm(s)e, Mg, My ime

(1—10)
where
(m) = (mz;mzims;m4) ’ m¢ = Mz + myd, ,
1 1
Mz = "2"(7111 +m2) N My = §(m3+m4) N
m: = m; — mgy, my = mg—my.
The function g,,(s) is periodic in s:
R .
m) = (2)(E)wimpaep, Mseinos, e
- ~{1+k/2)
= {_\My _\ym3+m4 (k 1)!2 1+ .
N(m) ( ) [1 +( ) ] ml!mzlma!m4!
bee/ = Zmbts‘""; (1-11)
I=k )

all (m; -.-my) are integers > 0, k=2(M, + M,) > 3.
The variables

a=+ce"®, at=  fge (1-12)



with the Poisson brackets

{a,a%}41 = i/p (1-13)

sometimes are more convenient than the angle-action variables. In these vari-
ables the Hamiltonian H = Ho+Vis

Ho(a,a*,s/R) = p(v,%a,ta, + v,%a,ta,), (1-14)

V(a,a"‘s/R) =p ng(s)azmla2+m2aym3ay+m4
and the Hamiltonian equations are

da,_'

d(s/R) ~ p

{H,a}a+, (1-15)

complex conjugated for a+.
If the perturbation V is negligibly small, Eqs. (1-9) give I,y = const, that
is, the famous Courant-Snyder invariant

P [{P.B, :
I, = 28, [(-—f—+a,X¢,) +X§J

The phase-independent term of the perturbation is

<V>= pz' <gm(s) > sﬁ"’cg‘” (1-16)
M,

where the prime means that Mz = my = 0in the sum, and < > indicates
the average over a period. This term gives the tune shift of the first order in V:

(1) _9 -
bvgy (p) 3€=,u< V>, (1-17)

We will usually include <V > in Hy and use the amplitude-dependent tune

0 1
Vs = Viy +§”=,y( ),

the ratio < V/Hg > gives a dimensionless parameter that estimates the mag-
nitude of the perturbation. For & multipole by the parameter is

A ~ bk ART1B(INK [27p) (1-18)

where A = /B¢ is the amplitude of the betatron oscillations, [ is the length
of a single multipole, and N, is the number of them per ring. :
The parameter A; increases with the amplitude. For sextupole errors in
the dipole magnets of one unit, b, = 10-1 em™2, and with the typical value
for the SSC 8 = 300 m, the parameter X\, ~ 1 for the amplitude A ~ 3 mm.



The perturbation V depends on the effective multipoles b,°/, defined in
Eq. (1-11). It means that for the off-momentum particle (Ap/p # 0) higher-
order multipoles generate effective low-order multipoles. Say, octupole b3 = i
unit generates the sextupole-like perturbation with

3 Ap
ef .2 '
bz 2637]0(8)( " )

Typically for the SSC, no(s}) = 3 m, (Ap/p) = 10-3, this gives b ~
0.5 units. The ratios of the perturbation parameters (1-18)

5 (@)

are of orders of one for the amplitude /& ~ 3 mm.
Problems

1. Derive the equation of motion for X, Y.

Answer:

' —
xe (B)x (2) (B2) + (2) - () (L),
4 P B,p P p P
Y4 (p_'),,,_ B: _y.
P

2. Find the explicit form of the perturbation (1-2), driven by sextupoles 4;, a,
and octupoles b3, a;.

Answer:

V = %{53_2( 3 —3:cy2) - 0322y+ b4—3(.1:4 —6x2y2 + y4) +a3(zy3 — zsy)}.

3. The momentum dependence of the functions ¢,8 = w? usually can be
found by expansion in & = Ap/p:

¢=bno+62 +...,
w=wp+bw +...,

where wp satisfies Eq. (1-7) with b, = 0, for n 2 2 and for the on-
momentum particle (p = p,). Find the explicit expressions for n;,w;.



Answer:

o [ (54 2) bt

2$1n (nve
x cos[my,® + ,u,o(s) 1z%(s")] ;
(1) w: y a+2$rR b, , ,
T ¥ A 4 [ e

X €08 2(mvz ) + 12y () — gy (s")] .

4. Find the first-order tune shift due to the natural chromaticity and sextupole

€rrors.
2xR ds
bea® = [ (5 )86 3~ bana(s)

Answer:
where by = b;(s), bz =bi(s}+1/p.
5. Find the first-order tune shift given by octupole and decapole errors.

Answer;

n), where 6H,, is

~ (=)! Ap\"H1-2k-
6Hn = ; {(n+1-2k -2

vy y =

&z k Ey ! n! R ok g0l ni1-2k-21
x(?) ( ) Wz <7 e Aymo g

Here 8. ,° w » Mo are functions calculated for an on-momentum particle
(Ap°/p = 0) and < > indicates the average over a period.
6. Find the expression for the dispersion function 1no(s) in terms of the beta-

function Bo(s) (see problem 3).

Answer:

s+2xR s
Mo(s) = 25111(1!'1/,0).[ i{_ cos[mv,® + p;%(s) — #zo("')]v B:°(s).



2. PERTURBATION THEORY; LIE ALGEBRA METHOD

Here we consider the solution of the Hamiltonian equations in the pertur-
bation theory and the closely related Lie algebra method developed by Dragt. 7
In zero approximation, H = Ho, Eq. (1-15) has a solution

a = Ae*/R X = constant . (2-1)

With V #£ 0, Eq. (2-1) introduces the new canonical variables A, At, which
satisfy the nonlinear equations

d) e dAt A
aerm ~ N gy = -3
where the operator ¥ is
. _ 9V(xs) @ oV(rs) @
Hhe) = =37 o ax  aa+
with
V().,s) = Zgm(s)AzmlA=+m2AymaAy+m4¢imv(c/R)_ (2_3)

For an arbitrary function f (A, 2%, 3),

a  8f e
ds/R) = a@/m) T M-
It is convenient to consider the linear equation for the distribution function
F(A, A%, s) rather than the nonlinear Eq. (2-2). A distribution function satis-
fies the equation dF /ds = 0, or Schrodinger-like equation:

oF -
W = XF. (2-—4)

The solution of the equation can be obtained by iteration. It takes the form,
well-known in quantum mechanics,

F(A,2%,8) = va(s,0)FO(), A¥) (2-5)
where FO(A, A1) = F(X,A%,0) is the distribution function at s — 0, and the

operator

va(s,0) = Texp [-; fo '(ds'/R);‘i(A,s')] (2-6)

is understood by Taylor expansion of the exponent with time-ordering of the
operators:



a2 ()

(=1)? f d.n/ _1_23 (s1) - R(s2) + ..

For a single trajectory, starting from the point (A0, AZ), the distribution func-
tion at s = 0 is

(2-7)

FOA YY) =6(x - Ao)6(At — A
and the solution of Eq. (2-2) is given by
M@:/¢uﬁn»FuAﬂg=am@pMO (2-8)

with the operator

Ua0(s,0) = f‘exp{z’/: %—’ J?(Ao,a')}. (2-9)

In Eq. (2-8) we integrated by parts and used the operator T, which orders
time-dependent operators reversely in time:

P (s )7 (s.) = d X(81)}H(s2) 81 <5
TH(s1)4(s) {)((s:)i((s:) 83 <.'.a;I )

The same operator © gives the transformation in time of any function F(A, A1),
In particular, for £ = A+ A we get

E(S) = /\+(8)A(3) = Ggo(s,O)A;AU .

The expansion of the operator ¥ in ¥ can be rewritten as

e(s) = o + i/' dR {V(f\osn) 50} -

/ d‘sl/ ] {V()‘osz) {v (Aosl):eo}} +

i.e. the expansion over the Poisson brackets — the result of the Lie algebra
technique.

Equation (2-10) gives the distortion of the Courant-Snyder invariant. In
the first order in V it takes the form

(2-10)



Aezy = €z,(5) —€2,,°
. ; ‘d . 2-11
= _'Zmz,yE:MzeyM"C-'m¢(')j as; gm(sl)enmv s /R ( )
0

R

with ¢(s) = ¢o + vs/R.

The parameter of the expansion in Egs. (2-7) and (2-10) again is the
parameter Ax, Eq. (1-18). Expansion of the operator ¥ in Eq. (2-8) gives the
expression for the 4—vector:

X1 = [A,(s),z\,"’(s),z\y(s), '\y+(3)J
in terms of the initial vector

X,°= (Aoz, Ao, Aoys Aoy t) :

Xi = R X;° + Ty (17K} X;°X,° + Tp X% + T X% 4 . (2-12)

with the matrices R, 1,,T3,..., which depend only on 8. (In our variables
A At Ry =1.)

The expansion (2-12) is the basic idea of the matrix formalism for paraxial
particle optics, developed by Brown.!”

The operator ¥ is linear in derivatives and polynomial in A, A\*+. The term
driven by the multipole bk, K > 2 has the generic structure

a
b Xo¥ ——.
KX0" = Xq

Thus, in the expansion of the operator  in the series over H, the first-order

term X gives terms by X, the second-order term X? gives terms

bebiXo* 1 (k) >2, et

This means that, in Eq. (2-12), the matrix T} is generated by sextupoles
bz only, the matrix 75 is given by octupoles b3 and second-order sextupoles by,
the matrix T; is generated by b4;b2b3 and bgaka.nd 80 on.

By definition, the action of the operator ¥ (A, s) on any function gives the
Poisson bracket

H(A8)f = {V(A,8), f1ane -

It is easy to show (see problem below) that



ef{f,g} - {eff,efg}. (2-13)

This immediately proves that the variables A(s), At (s), given by Eq. (2-8),
are canonical variables for any time s:

{A(), A7 (8)} 5, a4 = {Ba0do, Bag Aot} = 5{dodo*} = 1. (2-14)

In other words, the transformation (2-8) is symplectic; for more details, see
Dragt.”

In practice, the expansion (2-12) has to be truncated. Generally, the trun-
cated expansion is not simplectic, and the variables A(s),A*(s) are canonical
variables only approximately. Errors introduced by truncation are small but are
accumulated nevertheless in time. Tracking conducted in this approximation
gives physically senseless results, indicating fast growth of the emittances.

By retaining some terms having the same accuracy as the omitted terms,
the transformation, remaining approximate, can be made symplectic. For ex-
ample, if we want to neglect terms T3,73,... in Eq. (2-12), we can omit in Eq.
(2-3) all terms except those given by sextupoles, ¥ =~ ¥; o b2X0%(8/8Xs), and
write the transformation in the sympletic form

A(s) = fexp{i/().(dsl/R))(g(a\osl)}Ao (2-15)

rather than

A(s) = [1 +i /; 45/ R) s (Ao,s')]xo

although both expressions have the same accuracy. .

Furthermore, with the same accuracy the operators K(s) of different ar-
guments are permutable, and the operator T' can be dropped out. With this
simplification, the transformation (2-15) can be found explicitly. Using this
method (in the Lie algebra language)}, Dragt and his colleagues developed the
most advanced tracking code MARYLIE, extensively used for the SSC design.

Problem

Prove Eq. (2-13).

Hint: 2) Using the Jacobean, identify
{e{a,8}} + {b{c,a}} + {a{b,c}} = 0
and prove ﬁ{a,b} = {¥a, ¥b}.
b)Prove by induction.



3. CANONICAL TRANSFORMATIONS

The method of canonical transformations is another form of the perturba-
tion theory. The idea is to reduce the magnitude of the perturbation by proper
choice of the new variables. The method is well known in clasgical mechanics!®
and was extensively used for the proof of the KAM theorem.2? Let us start with
the Hamiltonian (1-14) and do the canonical transformation to new variables
(a,at), 8o that the new Hamiltonian ¥ does not contain terms of the order of
V{s). The generating function

$(at,a,s) = ia"'a-}-qb(a"‘,a,s) (3-1)
defines
, OY . gy . oY
+ _ ot . _ . = _ T
a « iaa, a a+1aa+, H 3(/R)

The explicit relation between (a2,2%) and the new canonical variables (e, at)
can be found only by iteration. It takes the form

3 .06 1[ oy \
dat TF da+ T 2{¢' dat }ua+ +e(ve),

.8 .0 1 a
at =at a—z——i £—§{¢,—§}aa+ +0o(V?)

a=a+s
(3-2)

where ¢(a, a*, s) and ¢(a,a™, s) are unknown real functions of the order of V
and V? respectively.

The new Hamiltonian does not contain the terms of order of V if the
function 1 satisfies the equation

Y . _
3/R) T Holaar = V(e,at,8)- <V > (3-3)

with the periodic solution of the form

: ' ++2xR
¥(a, a"”,a) = Z Cmazmla=+mzaymsay+m4/ (ds'/R)gm (sr)
x exp{—i(s - s')(mv/R)} ,
Cm = (e*™™ —1)~1, - 8H, /8(a*ta).

(3~4)

In the right side of Eq. (3-3) we subtract the phase-independent part of the
perturbation, which has to be included in Hy. Correspondingly, in the sum



Eq. {3-4) the term m, = my = 0 is dropped out, and the tunes include the
first-order corrections, given by Eq. (1-17).

Similarly, the terms of order V2 ip the new Hamiltonian are canceled out,
if the function ¢ satisfies the equation

STory * 8 Holaas = FOV e i< wV)>. g

Again, the last term in the right side of Eq. (3-5) has to be included in Hy. It
gives the tune shift of the second order:
-1

0
@_-2__9 -6
Svay 2 d(ata),, <l Vlaar > (3-6)

The new Hamiltonian takes the form

H(e,at,s) = 1,%;, e, + ooy ta, +

<V> —-;- <{¥,V} >+ o(V3), (3-7)

In principle, the procedure can be repeated to eliminate the terms of order
V3 and so on. The magnitude of the pertubation is reduced very quickly —
the method is “superconvergent” — after n iterations the remaining terms are
less than V3", In practice, however, it is not only complicated technically, but
also makes not much sense to proceed further, because the series is actually
divergent. We will return to this point later.

With accuracy o(V3) the Hamiltonian depends only on ¢ = ataq. This
means that e. , is constant in time. Dragt suggested calling this quantity the
nonlinear Courant-Snyder invariant (of the first order). The canonical conju-
gated phases are ¢, , = v, , (e} - 8/R, where v; , include the tune shifts of the
first and second order.

In 4-d space (c,,¢,,cy,¢y), the trajectory of a particle with constant mo-
mentum lies on the 2-d torus e, =const, €y =const.

In the old variables g,a* the torus is distorted. The linear invariant
€ = a%a is no longer constant. According to Eq. (3-2), the distortion is

given by

Ae=c—e=1i{e, g+ } + o(V?),
which is the same as that given by Eq. (2-11):

Agzy=— iz mz,yC(m)e,M’E,M”

L) " --—8
x/. e R(ds'/R)gm(sf)e—l'(l—s')my/g. (3 )

The trajectory in the phase plane (z,p,) or (y, py) winds around the ellipse
which it would form in the linear case £ = const, see Fig 3.
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Figure 8
Distortion of two stable trajectories,
obtained with the program MARYLIE.

The formulas (1-17), (3-6), and (3-8) give the tune shifts and distortion
function.?! They can be used to design an achromat, that is, the optical system
whose transformation matrix is the identity matrix to a precision of second or-
der, except for the path length, which depends only on Ap/p. For details, see
refs. 17 and 18. To estimate these nonlinear effects, let us assume that muiti-
poles are random with length ! and rms valye bk, and there are N} independent
multipoles per ring. The first-order tune shift is given by Eq. (1-17), where

<V>= 3" N(m)<p>t? (b-1/V Nior) €,M*/2 Mu/2, (3-9)
kM,

Here < £ > is the average value of beta-functions and Ngi = Ni(I/27R)3.
If random multipoles are given by the field errors in the dipoles, then Ny, =~ Ng.
Remember that k = 2(M, + My),m:=m, =0. <V > is not gero only for
odd multipoles (octupole Bj, dodecapole b5). The second-order tune shift is
given by Eq. (3-6), where



-1 _ - N(m)N(m') < g8 >*< bi_, >
.? < {'p’V} > = _4__ ZZ Nt.ot. tan(grmy)sz (k+l#+l)/2€y(k—-l'—l)/2

X ((k+1+1)22 4 (k— - 1) Dy
£ &y

(3-10)

The sum is over k,mz,my 1 1; the integers ma,mi, (A, M) = 1,2,3,4 are given
by the relations

1/k 1/k%
m1=-2- §+I+mz), m;=§(§+l'——mz),
my =1 E+l—m m) =1 I—c+l'+
2—2 2 z J 2‘—2 ) mg |,
17k 1/k
m3=5(5-1+my), mé:i(-z——l'—my),
1/k 1/k
m4=§(§—!-—m,), m;=5(5—1'+my).

The first-order rms
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tot sinx(myv)
Comparison of Egs. (3-9) and (3-11) shows that the tune shift &, (1) is of or-
der of distortion <« Ag/e >, and is given by the same parameter Ak, see Eq.
(1-18), which comes up in the perturbation theory. The ratio of the second-
and first-order tune shifts, according to the Egs. (3-9) and (8-10), is given
by the same parameter. It also gives the ratio of the second-order distortion
<Aefe>;~ < ple> ~ < Ac/e >*  to  the first-order distortion
< Ae/e>) ~ < ¢/e >, given by Eq. (3-11).

This could be not true, however, if m = Melz + myr, is close to an
integer, because of the small denominators in Egs. (3-10) and (3-11) for second-
order effects. These “resonances” are considered in the next section. Similar
enhancement of the nonlinear effects sometimes takes place also for equal tunes
Vz =vy. Sucha “quasi-resonance,” driven by the term g,, (8) with m; — my =
M4 — mg3, exists?? for octupole term b3 and for the second-order sextupole
effects.23

The parameter Ax and the nonlinear effects increase rapidly with the ampli-
tude of the betatron oscillations. An accelerator can be considered 858 a Bystem
close to a linear system only if Ax « 1. For the design of the SSC the concept
of the “linear aperture” has been formulated. By definition, Eq. (3-1), within
the linear aperture the tune shift and the distortion must be smaller than

Av<5.107%,  Ae/e<o0.1.



For ramdom multipoles, usually the second condition gives more severe re-
straint.
In CDR these conditions are used to set the tolerances of the multipoles b,
at the amplitude 1 cmm. The result is given in Table 4.3-1 of the CDG report.!
Given multipoles b, the parameters Ax become big for large amplitudes.
Perturbation theory is not applicable for such amplitudes. This is not for lack
of a mathematical method, but is a reflection of the drastic change in character

4. RESONANCES: SINGLE RESONANCE;
METHOD OF AVERAGING

Perturbation theory gives the answer in terms of integrals [compare
Eq.(2-11)] of the form

fo'(dSJ/R)am(ax)d"’"”“”R’ : (4-1)

The perturbation g,, (s), being periodic in s with period 27 R, can be expanded
in the Fourier series

gm(3) = ) gmpe~ik(#/R) (4-2)

If there is a harmonic for which

my =k, (mzymy, k) = integers , (4-3)

then the integral (4-1) increases linearly with s, and the perturbation becomes
arbitrarily large in time no matter how small the amplitude of the harmonic
gmk. The same is true for the method of canonical transformation: the factor
C(m) goes to infinity under the condition (4-3).

The increase in nonlinear effects under condition (4-3) is called a nonlinear
resonance. On the tune diagram (plane Vz,vy) the condition (4-3) defines a
number of straight line Tesonances, see Fig. 4. How dangerous they are de-
pends, however, on the amplitude of the resonance harmonic. For a smooth
perturbation gm(s) the amplitudes gmx decrease with k. For this reason, the
most dangerous are the low-order resonances for which the order of the reso-
nance |M,| + |M,| is minimal. A multipole b, drives only a finite number of
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Figure 4
Tune diagram for resonances up to 20th order.

resonances, for which the numeric factor N (m), see Eq. (1~10), is not zero. For
example, sextupoles b, give only three resonances of the third-order, because
N(m) # 0 only for

Sv, =k, Vi t2v, =k, v:=k.

The physical reason for the nonlinear resonances is, of course, the coupling
between the motion of a particle along the orbit and betatron oscillations.
But, unlike the resonances in linear systems, the amplitudes of the nonlinear
oscillations do not increase infinitely with time, as could be expected from Eq.
(4-1). Crucial here is the amplitude dependence of the tune. The growth of
the amplitude in the resonance changes the tune v(e), so that the resonance
condition (4-3) is no longer fulfilled. This stops further growth of the amplitude.

Perturbation theory must be changed to describe this effect. To describe
the isolated single resonance MzVs + myvy, = k, in the first approximation
we can drop all harmonics of the perturbation (1-10) except the resonance
harmonjc. The “resonance Hamiltonian” is

H:eu(1,¢,8/R) = p[Hy () + Ures(€) cos(m¢ — ks/R)) (4-4)

where m,, m, are fixed by the resonance condition; U,,, is



UrEl(ex: ey) =2 Z lgmk IE:MzEyMy 1
MM,

and Hy includes the corrections (3-9) and (3-10).

It is convenient to introduce new pairs of the canonical variables (¥, 4)
and (¢, B):

Y= med, + mv¢’y - ks/R ’ ¢ = my¢:c - m:¢y ’

I = (mals + mylL,)/(m? + m2) |
B = (myI, - mgl,}/(m? + mﬁ) ,
{t,ll,.]} =1, {¢sB} =1, {'lb’B} = {¢s J} =0 (4_5)
The old I., I, are related to J, B by
I,=m,J+m,B, Iy=m,J-m,B.
The new Hamiltonian is time independent:

Hrea(J,%,B,¢) = p[Ho — kJ + Ures(J, B) cos ] , (4-6)

and is independent of ¢. This means that B =const.
The resonance Hamiltonian is the Hamiltonian of a one-dimensional pen-
dulum. The Hamiltonjan equations are

dy dH;., dJ —~0H,,,

ds/R) ~ 787 AG/R) T oy (4-7)
The equilibrium (Yres, Jres) i8 given by the conditions
8intYres =0, V(Jres) = (OHo/0J)ren = k . (4-8)

The motion around the stable fixed Point (Yres, Jrey) for small z = V= Yres I8
given by

"y _ 2 2
Hrey =~ P(V 7 Jres) + 'Uns‘x ) ’ (4_9)
2 2
8% Hy dv ov dv
r_ =y 2 9V 2 Oy z _
where ' = (3.]7 )J... my al. +m, aI, +2m’m"6Iy (4 10).

The Hamiltonian (4-9) describes the linear oscillations



¥ =1ty cos(N1s/R) , J— Jres = AJsin(N)/R)
with the phase frequency

0= ViU, .

The time dependence of the betatron Phases ¢, , is linear plus phase oscilla-
tions,

Pay ~ Vres-S/R+tp cos{fls/R) .

For larger amplitudes the motion is not linear, and it can be described as a
superposition of the oscillations with frequencies nfl, n = 1L,2,....

If the amplitude exceeds the maximum, the motion becomes unbounded:
the phase ¢ increases with time. The maximum c¢an be found easily if the
resonance Hamiltonian is approximated by the expression

Hey = P[V’(J ~- Jr)z/2 + Urel(Jrens Brel) cos '/’] (4_11)

The reason for doing this is that (J—- Jy) remains small even when ¢ is of order
1. In Eq. (4-11) the second term describes the potential well with depth 2Uses.
The maximum amplitudes of the oscillators are

AJ = (J ~ I, )max = £\/A[To ], (4-12)

If the nonlinearity v/ — 0, then AJ — oo, as it would in the linear case.
The trajectory with the maximum amplitude (4-12) is called the separatrix
(sometimes the same name is used for the area of the phase space inside the
separatrix}. The motion inside the separatrix corresponds to oscillations; out-
side it corresponds to the rotation of a pendulum,

The separatrix itself connects two fixed but unstable points, see Fig 5.
The motion on the separtrix is aperiodic: it takes infinite time to go from one
unstable fixed point to another,

The motion within the separatrix corresponds to the tune in the range
V —~ Vres = 2'AJ, The width of the resonance line on the tune diagram is

The other resonances of the same harmonic (mz,my) of the perturbation are
separated by §u ~ 1/ Mz ,y. The approximation of isolated resonances is valid,
therefore, if 40 < 1. Otherwise the resonances cannot be considered separately.
Chirikov® conjectured that in the case of overlapping resonances Avyep > bv
a particle starts to jump from one sepratrix to another, walking randomly in
the phase space. The Chirikov overlapping criterion has since beer proven in
& number of numerical simulations. It gives a simple and surprisingly good
quantative criterion for the onset of stochasticity.
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Figure 5
The separatrix of a nonlinear oscillator.

The higher orders of perturbation theory give new resonances with am-
plitudes of order b;2,5,2, etc. They are again given by the condition (4-3).
The number of resonances of nth order in bx (with amplitudes proportional
to b:") increases as n?. Their width is proportional to the square root of the
amplitude, which decreases with n as Ax™3, where Ay is the parameter of per-
turbation theory (1-18) (see also the discussion in Section 3). The total width
of the nth generation resonances increases therefore as

Avee ~ n33,"2 (4-14)

Thus, if Ay < 1, the width of the higher-order resonances decreases exponen-
tially, faster than the number of resonances increases. The total width of all
resonances is of the order of that of low-order resonances of the frst generation.

On the other hand, for Az > 1, the resonances unavoidably overlap, and
the motion, according to the Chirikov criterion, is chaotic.

The parameter A is of the order of magnitude of the first-order tune shift
and distortion, as noted in Section 3. In view of this, the concept of the linear
eperture (3-12), where Az < 1, is very important. A particle has a chance to
live long only within the linear aperture. Outside it, where A > 1 and motion
is chaotic, it gets lost very fast.

Considering the single resonance, we neglected all terms of the perturbation
(1-10) except the resonance harmonics. They can be taken into account now by
the usual perturbation theory. The perturbation has harmonics with frequencies

k+mzv, + myyy,



with integers k,m,_, my. We can expect new resonances if the condition

nl=k+mu, + myy, (4-15)

is satisfied. Because 1 < 1 [see Eq. (4-14)], the resonances (4-15) are driven
by the nth harmonics of the potential Ur., cos ¢ with n 3> 1. The amplitude of
the harmonics can be estimated from the expansion

Utes cos Y = Ures Z(_)n¢n/n! .
n
Thus the amplitude of the nth harmonic with frequency nfl is of order

Ures'pon/n! ~ r“e—nln(n/\bo)

and can give resonances having a width exponentially small compared with the
width of the separatrix of the primary resonances. Nevertheless, they play a
very important role, generating the so-called stochastic layer in the vicinity of
the separatrix. A more detailed discussion is given in the next section.

We mention here that the higher-order resonances can be considered re-
gorously by Bogolubov’s method of averaging. According to this method* we
should start with Eq. (2-2)

—ida _ oV (a,at,s) (4-16)
d(s/R) da+
where the potential V (2-3) explicitly depends on s. The variable o should
be split into a slow (and generally large) part & and a fast oscillation part a:
& = &+ &. The potential now can be expanded in &:

8V _ aV(a,5) + - 0%V (&, s) + .+ 9%V (&, s)

da dat da+-ds & 3a (4-17)
The equation that is first-order for & is
~idé _ 3V \ _ aV{(a, s dV(a,s) (18
d(s/R} ~ \dat+)~ " aa+ dat

The last term is averaged over the explicit dependence on s, so that the whole
right side of Eq. (4-18) oscillates rapidly. The solution of Eq. (4-18)

““ﬁ“'(ﬁ)

gives the expression dV/da, Eq. (4-17), which depends only on the slow vari-
able &, 5%, Its average determines the equation for the slow variable &:



d:f;) =< ﬂ%—;{:—’s‘) >~-< f‘dS'{%p;:[(%),1?'(.«’)}&,‘5_(+ > . (4-19)

In the first approximation in V, the answer is equivalent to averaging Eq. (4-16)
over the explicit dependence on s. If there are resonance terms in V with
Amy = k, they have to be considered as slow functions of s and be retained
in averaging. This was used above in considering single resonances.

Problem
Find first-order resonances driven by octupole and decapole nonlinearities.

Answer: The decapole resonances are

Sv, =k, v t2u, =k ; v: 4y, =k

plus integer and 1 /3 resonances; the octupole resonances are

4v, =k, 2(u,:i:vy)=k

plus integer and 1/2 resonances.

5. INTERACTION OF THE RESONANCES

Considering a single resonarce in Section 4, we neglected all fast oscillating
terms, in accordance with the method of averaging. Let us study the approx-
imation more carefully. We start with consideration?® of only one oscillating
term:

H= Hre.(j, ¢) + Urel(js B) COS(i,L' - G/R)

where H,., is defined by Eq. (4-8).
Since we are considering effects that are important only in the close vicinity
of the separatrix, we can simplify the Hamiltonian to the form

H(j,%,8/R) = Hyoy + U, cos(t) — 5/R) (5-1)
with
I _v'(j"fo)2+U _
res = __2—_— 0cos 1) (5 2)

where Uy = Ures(jo, B) and o' = v'(jo, B), see Eq. (4-9). We assume Us > 0.
The resonance Hamiltonian describes the phase oscillations. For small ampli-
tudes (¥ =~ x) the frequency of the oscillations is

1 = \/V’Uo .



If H,.., approaches the energy on the separatrix Hpy,, = U, the period of the
oscillation depends on the amplitude. For small A = 1 — Hieo /Uy it can be
found from Eq. (5-2):

{(¥'/20)* = sin?(y/2) - sin® (¢, /2) (5-3)

where the reflection point Y'm is defined as

sin® (Ym /2) = h/2 (5-4)

and we used the Hamiltonian equation, ¢’ = /(5 - j5). Equation (5-3) gives
the period for b < 1,

2 32
T=ghz, (6-5)
and the dependence ¥(s) for ¢ > ¢,
(8~ 8m) _ 1 ] Ym
g = ﬁ[ln ta.n(z—) ~In ta.n(—{)} (5-6)

Here ¢(s;) = ¢,.. If the perturbation is included in Eq. (6-1), H.., is no
longer constant:

UHres d(s/R) = {Ho, H}y; = Upt/()sinfp — o/R).  (5-1)
The variation of the energy Hp., per half period is

2x—y¥m
Ah = -f dy sin(y ~ s/R) .
Yym

The integral is exponentially small because ¥/ ~ N < 1. It can be extimated
by the saddlepoint method, using Eq. (5-6). The contour of the integration
must be shifted to go through the saddlepoints ¢F = » + 2¢1In(1/Q). After

sore calculation, we get

8n 8 1 4
- /a0 s m _
Ah-—(n——2)e sm(—R +—-nln—-—). (5-8)

Here we used the factor 87, given by more accurate calculations,!? instead of
2\/me? ~ 8=, which is given by the saddlepoint method. The argument

_ 8m 1 4_sm l
X(h) = 7 +I_'iln1,_l::_ 7 +4

is the time at which the oscillator passes the equilibrium phase ¥ = n. The
next crossing of the equilibrium occurs at '

T(h)



o 1 1 32
X—X+§T(h+Ah)—X+ﬁIni- (5-—9)

where

h=h+Ah. (5-10)

The system of Egs. (5-9) and (5-10) gives a map — a transformation (h, X) —
(h, X) in discrete time.

It is worth noting that the variation of the energy h is gained in & narrow
interval around the saddlepoint, whereas the phase X increases during the time
between successive crossings of the saddlepoint. It is a rather typical situa-
tion, which allows us to reduce differential equations of motion to & mapping,
approximating a force with a §-functional kick.

The system (5-9) and (5-10} has fixed points, hn, which are mapped to
themselves. They are given by the condition

1 32
=In— =2mn. 5~
0 In e ™ (5-11)
The motion near the fixed pointz can be described by the linearized equations
. - = K .
X =X+2rI(mod2n), J=1I- 5, 8in X (2-12)
where
27{ll = (1-h/h,) < 1 (5-13)
and
K = (87/h,N3)e~*/30 (5-14)

The system (5-12) is called a standard map. It is equivalent to the system with
the Hamiltonian

H(I,X,s/R) = r XK coine”‘('/R)
T 2 (27)? ]
-0
The Hamiltonian gives resonances for all integers I, = k having the width
AI = (2/7)VK. The overlap of the resonances results in the stochastic behavior
of the system. Numeric simulations predict the transition to chaos for X > 1.
From Egs. (5-11) and (5-14) it is easy to see that the motion is stochastic in
the vicinity of all fixed points with sufficiently large n:

hp = 32e727n0 (8r/03)e="/20 = p (5-15)



They are all in the exponentially thin layer close to the separatrix of the primary
resonance. In many-dimentional systems these areas are connected, giving a
web of thin shochastic layers along which a particle can drift away from the
initial location. This Arnold diffusion js the cause of the universal instability
of nonlinear systems.

The rate of diffusion for 1 < 1 is exponentially small. It can be estimated
from Eq. (5-8). The variation of the tune per half period is

Bvryy =v'Aj = V(W22 Ak = ~(8r/Qv/E)e="/" gin X |

With random phases X, it gives the diffusion rate,

Dy-§m<AVT/2 >= (QZT)E .

The period T depends on k, and the diffusion rate decreases close to the sepa-
ratrix. The average over the interval 0 < h < Pmax, With hmax given by (5-15),
gives < 1/T >= 03/r, 5o that

D, = 167¢~*/1, (5-16)

The numeric factor must be considered a erude estimation, and it depends on
the detailed structure of the shochastic layer.

The rate (5-16) gives the rms diffusion Ap < 0.01 during 10® turns, if
f1 < 0.09. This constrains the width of the primary resonance of the mth
order, Avye, = 40 /m.

The residue criterion (see next section), however, gives even tougher re-
straints on 1, mfl < 1 /6, so that Arnold diffusion does not give rise to addi-
tional problems.

Up to now, we have considered the effect of the single closest harmonics
of the perturbation. Similarly, other harmonics, U, cos[y) — k(s/R)], k > 1,
can be considered. They give the same result as that given by Eq. (5-16), but
with /k instead of ). This means that they are negligibly small, and only
interaction of the neighboring resonances is important,

6. STRUCTURE OF THE PHASE SPACE;
THE RESIDUE CRITERION

This section is based on review articles by MacKay,!! Hellman,?4 Hellman
and Kheifets,?® and Ruth,?® where other references can be found.

The ideal accelerator is a linear conservative system. Such a system is
always integrable: for a linear system with n degrees of freedom there are n in-
tegrals of motion. The motion can be described as superposition of the normal
modes. In the action-angle variables the action I for each mode is the integral



of motion. In (2n-1)-dimensional phase space of constant energy {Ix, b, k =
1,...,n), these variables specify the n-dimensional surface, which is called the
n-d torus. The tune can be defined as the change of angle ¢; per period,
Vi = 1/21r [qbk(.s + 27rR) ~ ¢k(s)].

For a nonlinear but integrable conservative system in a proper variables,
the Hamiltonian H (Zx) does not depend on phases ¢; so that Iz = const. Since
the motion is again confined to the surface of the n-d torus, it is bounded in time.
The tunes vy = 3H /81 depend, however, on the amplitudes. The trajectories
with irrational tunes describe so-called quasi-periodic motion. They cover the
surface of the torus densely. The trajectories with rational commensurate tunes
are closed. The motion can be described as n uncoupled nonlinear oscillations.
Two-d phase space for each oscillator looks like that in Fig 4. There are elliptic
{stable) fixes points and unstable (hyperbolic) points. Two hyperbolic points
are connected by the separatrix of finite length.

Most real nonlinear systems are nonintegrable, and integrable Hamiltoni-
ans are rare. A single FODO cell containing a sextupole is the system well-
known in nonlinear mechanics as the Hénon-Heiles system, and it is noninte-
grable.

All perturbation theories imply that the infinite series of the theory can be
truncated. This means that they approximate the nonintegrable system with
an integrable one. For example, after n canonical transformations, omitting the
small remaining terms, the Hamiltonian is reduced to the form H = vI, which
is obviously integrable.. Because the initial Hamilonian is nonintegrable, the
series of the perturbation theory must be divergent. They describe the system
approximately, only for a finite period of time.

Nevertheless, according to the KAM theorem, under a small and smooth
nonlinear perturbation, n-d tori with sufficiently irrational tunes are distorted
but preserved. Most of the trajectories lie on the invariant tori, but a finite
fraction of trajectories are stochastic and lie between KAM tori. This inter-
mittent structure of the phase space is typical for nonlinear systems and looks
the same under any magnigication, see Fig 6. The character of a trajectory
has a singular dependence on the initial conditions; small variations can make
a regular trajectory chaotic.

Two processes generate chaotic trajectories. One of them gives a stochas-
tic layer in the close vicinity of a separatrix, which is caused by overlapping of
the secondary resonences, driven by the interaction of the pPrimary resonances.
More detailed consideration shows that the separatrix makes an infinite number
of loops, going back and forth inside the stochastic layers, so that the length
of the separatrix is infinite, Fig 7. For small perturbation, most of the trajec-
tories inside the separatrix remain stable. Thus the separatrices confine the
islands of regular motion, surrounded by stochastic leyers near the separatri-
ces. If the nonlinearity increases, the stochastic layers become wider and the
islands of stability shrink. Generally, all stochastic layers are connected in one
stochastic component of the phase space. For any two points in the stochastic
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Figure 6

Figure 7
The trajectory in the vicinity of the separatrix for a nonintegrable map,
2=y, §=—-z+2y% (from McMillan®?),



component, there is a trajectory that connects arbitrary small vicinities of the
two points. If the trajectory is stochastic, the particle can drift away arbitrarily
far from the initial conditions. Motion is unbounded even if stochastic layers
are thin. It is Arnold diffusion. The exception is the systems with two degrees
of freedom. For them, 2-d invariant KAM tori divide the 3-d space of constant
energy so that chaotic trajectories remain confined between the invariant tori,
and the motion is bounded.

For larger nonlinearities, the elliptic periodic orbits, which give fixed points
in the centers of the islands, become unstable, splitting into two orbits, one
stable and one unstable. These period-doubling bifurcations occur for some
sequences of the critical values of the nonlinearity. This universal “Feigenbaum
sequence” of the critical values is convergent, 8o that the process generates an
infinite number of hyperbolic and elliptic orbits as the nonlinearity approaches
some finjte limit. As a result, a single island of stability breaks up into smaller
and smaller islands, separated by the chaotic layers. In the limit for the finite
critical nonlinearity, the process ends up giving global stochasticity.

The motion in the stochastic component is ergodic (this means that the
trajectory covers all stochastic components of the phase space densely); there is
mixing (i.e. the exponentijal decay of initial correlatious), and close trajectories
diverge exponentially in time; motion is random (can be considered as the
Markov process), etc.

The stochastic component is not uniform. A particle spends a lot of time
penetrating barriers that are remnants of the broken invariant tori. The transit
time between two parts of the stochastic component scales is

T~ (K-Ke)™; A~ 30

for a nonlinearity X larger than its critical valye K ...11,37

Most of the rigorous results in nonlinear mechanics have been obtained for
systems with two degree of freedom. It is convinient to consider the intersection
of a trajectory with a 2-d plane {Poincaré surface of section). The angle (divided
by 27) between two successive points of intersection of the trajectory with the
surface of section gives the winding number (tune) of the trajectory.

The relation between successive points (1,6) at S, = 2rRn, and (1,6) at
Sn+1 = 27R(n + 1) describes the dynamics of the system at a discrete time
On = 8 mod27 R, and is very convenient for numeric simulation. This is called
mapping. For example, the motion of a particle in a linear lattice containing a
single multipole can be described in the thin-lens appoximation by the mode!
Hamiltonian:

H(I,¢,3/R) = (v'/2)(I - I,)? — v, cosd D 6(c —n). (6-1)

The Hamiltonian equations takes the form



¢ 4 K | _
-1 = E—;ﬂ;stwmw;&(o n) (6-2)
where
v=¢/2r; j=v'(I-I), ad K= arim3'y, . (6-3)

We assume in the following that X > 0, Equations (6-2} are equivalent to the
map

Y=¢+jmod(l), jF=j- (K/2nm)sin 2rmdp . (6-4)

For m =1 this is the “standard” map.
The periodic orbit with period m gives the set of m points on the surface
of section

(U, 7)ix = (l/m,k/m) ; (I,k=0,1,...,m—1) (6-5)
which is mapped on itzelf by the transformation (6-4):

) TR () PR (6-6)

For k = m this gives a fixed point. An orbit with the irrational winding
number v(I) makes, with time, a KAM circle on the surface of section. The
KAM circles break up at some critical nonlinearity K » which is different for
different circles. Green!? related the breakup of the KAM circles to the stability
of the neighboring periodic orbits. Let n/m, n'/m’ be two rational numbers,
80 that

n/m<v<n/m (6-7)

and nm’ — mn’ = £1. The rationals are neighboring; if not, the interval can
be divided into subintervals whose ends are neighboring rational numbers, Ac-
cording to the Poincaré-Birkoff theorem, for each rational winding number there
are at least two periodic orbits, one linearly stable (elliptic) and the other lin-
early unstable (hyperbolic). Thus there are elliptic periodic orbits with winding
numbers n/m, n'/m’. The stability of the KAM circle with winding number
v depends on the residues of these periodic orbits. The residue of the periodic
orbit is defined as

R(-:;) = %(1 - %TrM'"). (6-8) |

Here M™ is the product of the m matrices, each describing the linearized
transformations (6-6) of the periodic orbit:



! k . I+k  — &k
(;+6¢,;+5})—)(—;+6¢,;+6]).

For the standard map all M are equal;

(5)-*(): (%) o

According to Greene!?, if both residues R(n/m) and R(n’/m') ere small
(usually this means < 1 /4), the KAM circles in the interval (6-7) are not broken.
If they are large, there are no KAM circles. The KAM circle that breaks up
last in the interval (n/m ,n'/fm'), m'> m has the “noble” winding number

n+ n'y

Vnoble = ———__
noble m+m"7,

1=%(1+\/§).

For the model (6-9) the residue can be calculated explicitly. First, note that,
for stability of the periodic orbit with period m, the frequency w of the smal]
oscillations of the orbit around the periodic orbit (the Floquet parameters)

m 6¢ —_ gE2riw 6'1’
M (6:')“ 2 (6:')

has to be real. The trace of the matrix M™ is

%TrM ™ = cos(2mw)
and the residue criterion takes the form

R =sin*(rw) < 1/4. (6-10)

The eigenvalues of the matrix M are

anoa =

- (-EK/z2)
8o that

%TrM"‘ = %(A+"‘ +A-") = cos(ma) .
According to Eq. (6-10), there are KAM circles if

27w =ma < x/3.

For small K, this gives



mvVK < n/3. (6-11)

Let us compare this result with Chirikov’s overlap criterion. With the Fourier
expansion

6(o - n) = Zez’n‘ak
k
the Hamiltonian (6-1) takes the form

H(1,¢,5/R) = (v'/2)(I - Ip)? - Vo) coslm¢ — k(s/R)] .

There are resonances with tunes

myy =k, Vi = -—d—¢— =!I — Ip) (6—12)

(s/R)
for all integer k. Each resonance is described by the resonance Hamiltonian:
H(j,¢,3/R) = (mv'/2)52 — kj — my, cos 1)
where Y = m¢—2rko, j = (I-Io). The frequency of the small phase oscillations
is
0 =m?'V, = K/an2.

The width of the resonance is

Aj=:l:‘\/4Vo/V’ N AV=4\/V'V0=4n/m.

The distance between resonance (6-12), v ~ I/m, and the overlap criterion
gives

mV'Vo<1/4, o VK< /2. (6-13)

The numeric simulations with the standard model (m = 1) give the critical pa-
rameter K., = 0.97163. Thus the residue criterion (6-1 1) gives better numerical
“results than the overlap criterion (6-13).

As mentioned above, if the nonlinearity parameter X increases, the periodic
trajectory becomes unstable and exhibits a period-doubling bifurcation. We can
illustrate this by mapping (6-2). For K > 4 the orbit with period 1 is unstable.
The stable orbit with period 2 appears if K > 4 with

Jp = (K/47)sinnj, , Xp=—~jp/2,
which is stable until (K/4) cos Tip < 1,
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7. CROSSING OF A RESONANCE;
SYNCHRO-BETATRON OS CILLATIONS

So far we have considered the motion of an on-momentum particle. Slow
oscillations of the momentum with synchrotron frequency Q, give small oscil-
lations of the betatron tune and Twiss parameters with the same frequency.
This is an example of a general situation of slow variations of a parameter, We
start with the Hamiltonian (4-6),

H(j,w,s/R) = Ho—kj+ Upcosyy, (7-1)
which describes the resonance mv = k in the canonical variables
¢=m¢—k(s/R), F=1I/m
and assume the simple form for Hy
Ho =mvoj + (V'5%/2); o' = m?(8/8I} = constant .

The tune v is my () = dy/d(s/R) = mvg — k + v'5 but Vo varies in time with
amplitude §u:

Vo =5+ bv-sin(Q, -s/R) . (7-2)
The Hamiltonian takes the form
H=(0'/2}( -5)*+ U, cosy . (7-3)

The width of the resonance is, as usual, Ay = +24/Us /v’ but the position of
the resonance oscillates with frequency @,:

Fe(s) = 7 — (mébv/1v")sin(Q, - 8/R), j=(k—gom)/. (7—4)

A particle with amplitude 5 is in the resonance if |f — 7| < v/1'. What happens
to the particle depends on the parameter

v = (mévQ,/N?) = ;' /U, (7-5)

where 112 = v'U,. For the fast crossings of the resonance v 3 1 the system can
not follow the change of the tune:

dj dj, bv
i6/B ~ V< aam - (7)'Q"

In this case the Hamiltonian equations



dy . dy e .
d(S/R) = UOSIH'J) ’ d___(S/R) =V (J _Jr) (7‘6)

give
" ret
' = —p Jr .

If bv > Q,, then 7,' can be considered constant, j.' = j,'(s,) where s, is the
time s at crossing. In this case

¥(s) =¥ ~ (V'3'/2)|(s/R) — (s, R))?
and the gain of j for a half period is given by (7-6) and (7-7) as

J=7+ Uoy/ (27 /v'5,") sin(y, + 7 /4) | {7-7)

This depends on the phase ¢, = ¥(s;). If the phases of successive crossings of
the resonance are random, then Eq. (7-7) gives the diffusion with the rate

_4  Arse 029

/R .’ Y>>l (7-8)

For & slow crossing v < 1 the system can follow adiabatically the variation of
the tune, i.e. the particle can be trapped in the resonance. The total variation
of the Hamiltonian (7-3) is

dH = ANy — et
/R = V(i -5 ) = -y,

For the slow crossing J; ~ const, so that
H + 7, = constant . (7-9)
With (7-6) this becomes

(%77 /20') + Up cos  + j,'"sp = Uy cos ¥r + 5.0, (7-10)

The motion described by Egq. (7-10) depends on the initial conditions: the
particle can be trapped in the potential Vs (see Fig. 9),

Ver =Upg costy + 3,y R (7-—11)

Or crosses resonance ¢ = ,. In the latter case, the variation of the tune
Av =v'Aj per crossing is gained mostly by the interval of ¥ near the point of
reflection 9,:

Av = 202A dy sin ¢/\/2V'[Vef(¢r) —Ver(¥)], Av ~ —20vin (T,TI‘T)' y



AVof

Figure 9
The effective potential for slow crossing of the resonances.

The phase of the crossing is limited in the narrow interval:

V<Y < —v+ Viry .

The diffusion rate is given by

8 V)2 >= vdn? l -
5(;/.—}27 < (A ) > ZQ.Q’ In (U) (7 12)

and the numeric coefficient is taken from the numeric results.2® 4 major ques-
tion remains: whether the Phases ), of the successive crossings are indeed
random to give the diffusion. To answer this, we rewrite the Hamiltonian (7-1)
in the new canonical variables (X, J), where

X = ¢+ Acos[Q,(s/R)]

and the parameter A is
A=mév/Q,. (7-13)

The Hamiltonian takes the form
H(j,X,s/R) = (v'/2)(j — 7)* + Up cos|X - Acos(Q,s/R)]
with j = const, given by Eq. (7—4). With the expansion
ereora = Y in g (A)emina
over the Bessel functions, the Hamiltonian becomes a = Q,(s/R):
B=0-5)/2400) Ja(A)cos(X — na + nr/2) . (7-14)
The Hamiltonian (7-14) describes the sideband resonances

Yn =V'(Jn~7)=nQ,, n=integers,



around the primary resonance mvo = k. The synchro-betatron sideband res-
onances have a width Ay = 4015 /m, where the frequency of small oscillations

0 = VUeda ()] .

For n ~ X the width of all resonances is about the same, {1, ~ O(rA)-1/4,
and goes down exponentially for n > . Therefore, essential resonances are
within the band: v, — k/m < +8v, with tune separation @,/m. According to
the Chirikov criterion, the stochasticity emerges if the resonances overlap,

Ken? = (400%/Q,>VrA) > 1. (7-15)

The numeric factor is corrected according to ref. 29. The residue criterion
mily > 1/6 gives

Kres® = (36m?0%/v/7A) > 1. (7-16)

For small crossing rates (7-5) v < 1 the criteria (7-15) and (7-16) are fulfilled
and there is diffusion (7-12), if only the particle is not trapped in the reso-
nance. For the fast crossing v 3> 1, the stochasticity criteria are not necessarily
satisfied, and diffusion does not always take place.

For the SSC the modulation of the tune®® is of the order of the synchrotron
tune @, = 2-.10-3, In this case, the number of sideband resonances (7-13) is
equal to the order of the primary resonance. The criteria (7-15) and (7-16)
give very different limits on the width of the primary resonance Av, = 40 /m:

Avs <(Q./m)(0.167m)/4  (Chirikov)

7—
and  Av, <(2/3m®)(rm)/*  (Greene and MacKay). (7=17)
Let us take the residue criterion, and suppose that there is stochas-
ticity 6m{l > 1. The crossing rate (7-5) for év ~ Q, is still small,
v X15:-1071 m? « 1, if the order of the pPrimary resonance m < 19. This
is a reasonable assumption within the linear aperture. The diffusion rate (7-
12} in this case gives after 10® revolutions

<{Av)?> > 1071m* In?(1/v).

For m ~ 10 the width must be much larger than Av ~ 2.10-2 to stay
in the linear aperature. Thus condition (7-17) is necessary to achieve the
luminosity lifetime at the SSC. Fortunately, it is not as tough as the residue
criterion applied to the primary resonances, and therefore the synchro-betatron
resonances do not cause additional problems.



8. MODULATION DIFFUSION

For a nonlinear resonance, mqv; +myv, = k, in the resonance approxima-
tion the variables j, ¢ (4-5) describe the nonlinear oscillations in the direction
transverse to the resonance line. The amplitude B of another degree of freedom
remains constant, d¢/d(s/R) = mytz — mavy. [To avoid confusion we should
mention that the directions of the resonance lines on the plane of the amplitude
(J, B) and on the tune diagram (vz,1y) are generally not the same.]

The nonresonance terms of the perturbation give coupling between these
two degrees of freedom:

dB/d(s/R) = Y inaV (nynang)et(m¥+nad)-inss/R (8-1)

In particular, if the motion (4, %) becomes stochastic, the right side of Eq. (8-
1) is equivalent to a random external force, which generates diffusion along
the stochastic layer, called modulation diffusion. In ref. 14 a simple model of
modulation diffusion is considered. Suppose that 4 is the phase of a motion
that can be described by a map with period T = 27/Q and a parameter K.
If the motion is stochastic (the parameter K2 > 1), it generates a stochastic
layer of width Av.

The amplitude of another degree of freedom varies because of the coupling:

dB/d(s/R) = Vysin[y — w(s/R)] . (8-2)

In Eq. (8-1), w = dg/d(s/R) ~ na, the diffusion < (AB)? > depends on the
decoupling of the phase correlations:

R =< ™). g=0le)

For large |s — &' Zaslavsky?! found for the standard model

: 1
~ = Ale—s] =luk.
R ~¢ , A=zhkK

The final expression for the diffusion rate is

d 7Vo?
< (AB)? > = , lw] < Av
d(s/R) (AB) 2Av (8-3)
_ ("o’ K ~ 25/ Av) (Jwl-Av)
= ( ADIT )c y W] >Av.

The diffusion rate is exponentially small for particles with frequencies larger
than the width of the stochastic layer. For more details see Vivaldj,1®



8. NOISE AND NOISE-RESONANCE INTERACTION

Noise in the collider causes diffusion and loss of particles. It has several
sources: intrabeam scattering, synchrotron radiation, residual gas, noise from
the rf systems, feedback systems, and power supply, Schottky noise of the beam-
beam interaction, etc. The estimation gives an emittance growth rate?! of order
of

defdt ~ (10715 4 10" mfsec, e= /B . (9-1)

If the amplitude dependence of the tune is of the order of dv/3c ~ 10¢ m~1,
it gives a tune shift

ov  de —6
3 gt~ 10
for a luminosity lifetime of ¢ = 1 day. The diffusion rate can be enhanced if a
particle driven by the noise crosses nonlinear resonances. This effect hes been
considered by Hereward,3? Neuffer and Ruggiero,®® and others. We use here
the kinetic equation method.?

The Hamiltonian H (g, £,8/R) of a nonlinear system with a random exter-
nal force f(s) takes the form

Av ~

H=Ho+V + (R/pc)f(s)X (9-2)

where Hy = ve, V is given by Eq. (2-3), and X = /2 cos ¢ is the betatron
coordinate of the particle (the one-dimentional case is considered for simplicity).
The closed-orbit term is omitted here as unimportant. The general expression
for the distribution function F, Egs. (2-5) and (2-8), can be rewritten as the
integral equation

a [
Fla,a*,s) = Fy(a,a*) - z'[ % [)!(8') + §(s')f(s’)] - F(s") (9-3)
o
where the operator § corresponds to the last term in the right side of Eq. (9-2):

sy /B -"n(t)..a__ in_0
g(s)_pc 2[c da ¢ dat

and u(s) is the phase advance. In the simple case of white noise, the force f(s)
is given by the averages

<f(&)>=0, < f8)f(s)>= Rd(s)é(s — &') . (94)
Averaging Eq. (0-3) gives



< F(s) >= Fo—if -‘%}7(3’) < F(s') > —
0

fﬁ”§mﬂ<fwuuv>-

(9-5)

According to Eq. (9-3), F(s) depends on J(s') with s > & Therefore, for

§> s,
< f(s)F(s') >=0

and <IE(SVFP(s') >=< f(s)1(s") >< F(s) > .

The first momentum of Eq. (9-3), for this reason, becomes

<I()F(s) >= T5(s)d(s) < F(s) > |

Egs. (9-5) and (9-7) give finally the Fokker-Plank equation:

6 < F > — o 1 Y.
._a—-(;ﬁé)__ tN< F> Ed(s)g <F(3)>.
Using Poisson brackets this then becomes (we drop off < >)
aF d(s}
5(—.9/_357 = ¢{{H, F}aa+ T{Q{QF}}uw

with

9=(R/pc)V/B[2 e~ (a* 1 ¢.c.

In the angle-section variables (¢, €) it takes the form

a_(%% ={H,F}y.+ %‘ﬂ{g{gf‘}}

where H = ve + V is given by Eq. (2-3), and
9(s) = (R/pc)\/2Becos ¢ .
The explicit form of Eq. (9-9) is

or
3(/r) ~ e F)

- #1(2) () @) ) () @)

(0-8)

(9-9)

(9-10)

)]

(9-11)



The right side describes the diffusion with the diffusion rate in ¢

which is generated by the noise. The left side of Eq. (9-11) corresponds to the
motion with the effective Hamiltonian H, 7> such that

8H.; OH 8H.; OH (D) .
—-‘ﬁ-——-%-'i-D, Je ——é?+(E)sm2¢. (9—13)

For a particle close to resonance my = k, it is convenient to use variables
Y=m¢—k,J= e/m. After averaging out a small oscillation term, H,; takes
the form

T 132
Hey(¥,J,8/R) = _t:'_(J_z_-J,._)_ + Upcosyp + (ngl)!b

0-14
, 9 (au) my —k (6-14)
where v=m‘l—], Jr = .
O¢ v!

The Hamiltonian (9-14) has the same structure as the Hamiltonian (7-9) which
describes crossing of a resonance. The rate of crossing is v = v'D/m(]3?
where {1 = \/0'T, is the frequency of the phase oscillations of the resonance.
For the diffusion rate (9-1) and for reasonable values for the SSC of v/, m,
and {1, the rate v « 1. Successive crossings of the nonlinear resonances
within the linear aperture give an additional diffusion rate (7-12), with Q, =
(47D/Av)(8v/3¢), which depends on the average distance between resonances
Av, including synchro-betatron resonances, and is very small. '

The main effect of the noise, therefore, is dragging new particles onto the
stochastic layers of the nonlinear resonances, where they can drift away because
of Arnold’s or modulation diffusjon.

10. CONCLUSION

The first and most important step in studying the beam stability of the
SSC is the introduction of the linear aperture. Within the linear aperture,
there is a hierarchy of generation of resonances, that is, the width of the res-
onances driven by a nonlinearity of order " decreases as A%/ where ) is
the parameter of the perturbation theory (1-18). For A <« 1 the number
of resonances of higher generations increases more slowly than their width.
Therefore, the onset of stochasticity depends on the density and width of the
first-generation resonances, driven by the muitipoles br. These can be cal-
culated explicitly. The residue criterion gives the stability of the orbits up



to amplitudes of 55 to 60 rms beam sizes (or 6.7 to 7.3 mm), which is in
good agreement with tracking results’ (about 8 mm). The synchro-betatron
resonances for such amplitudes still do not overlap, and they also increase the
total number of resonances of this order of magnitude. Thus they do not change
the size of the linear aperture, given above. This should be considered, of course,
as a crude approximation, being dependent on the particular set of random
multipoles. The Arnold diffusion gives a small effect for the linear aperture.

On the other hand, all effects increase very rapidly with the amplitudes,
giving for Ax > 1 a diffusion rate too high to confine particles for the 108
revolutions needed for the luminosity lifetime. This means that the concept of
the dynamic aperture! can be useful only for small numbers of turns.
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